Enzymatic Resolution of cis- and trans-4-Hydroxycyclopent-2-enylmethanol Derivatives and a Novel Preparation of Carbocyclic 2',3'-Dideoxydidehydronucleosides and Aristeromycin

Stanley M. Roberts and Karoline A. Shoberu
Department of Chemistry, Exeter University, Exeter, Devon EX4 4OD, UK

Abstract

The ($1 R, 4 S$)-acetate 3 and the ($1 S, 4 S$)-alcohol 5 have been obtained optically pure by lipase catalysed esterification: compounds 3 and 5 have been converted into carbocyclic dideoxydidehydronucleosides and aristeromycin 9.

There is intense current interest in the preparation of carbocyclic nucleosides, ${ }^{1,2}$ particularly of the ribo-, ${ }^{3}$ arabino-, ${ }^{4}$ 2^{\prime}-deoxyribo-, ${ }^{5} \quad 2^{\prime}, 3^{\prime}$-dideoxy- ${ }^{6}$ and $2^{\prime}, 3^{\prime}$-dideoxydidehydrotype. ${ }^{7}$ Herein, we describe a new method for the preparation of chiral synthons for the production of various carbocyclic nucleosides.

The 4-hydroxycyclopent-2-enylmethanol derivatives $\mathbf{1 , 2} 2$ and 5 are obtained, in racemic form, by a Prins reaction on cyclopentadiene followed by preferential protection of the primary hydroxy group. ${ }^{1,8}$ The cis-1,4 derivative 2 was converted into the acetate 4 using acetic anhydride in pyridine (94%).

$1 \mathrm{R}^{1}=\mathrm{CPh}_{3}, \quad \mathrm{R}^{2}=\mathrm{H}$
$2 R^{1}=\operatorname{SiMe}_{2} B u^{\prime}, R^{2}=H$
$3 R^{1}=\mathrm{CPh}_{3}, \quad R^{2}=\mathrm{Ac}$
$4 \mathrm{R}^{1}=\mathrm{SiMe}_{2} \mathrm{Bu}^{2}, \mathrm{R}^{2}=\mathrm{Ac}$
Hydrolysis of the acetate 4 over 20 h in pH 7 phosphate buffer using Pseudomonas fluorescens lipase (pfl) as catalyst gave the ($1 R, 4 S$)-alcohol (+)-2 (43% yield $>95 \%$ e.e.) and recovered $(1 S, 4 R)$-acetate $(-)-4(42 \%$ yield $>95 \%$ e.e.). The absolute configuration of the alcohol and the ester were determined by correlation with the tetraol 7^{9} and the enantiomeric excess (e.e.'s) were assessed using NMR spectroscopy and a chiral shift reagent.

Reaction of the trityloxymethylcyclopentenol 1 with vinyl acetate over 75 h using pfi as catalyst gave a 98% yield of equal amounts of the readily separated ($1 S, 4 R$)-alcohol (-)-1 and the $(1 R, 4 S)$-acetate $(+)-3$. Both compounds showed excellent optical purities ($>95 \%$ e.e.) as assessed by chiral shift NMR studies.

Similarly, the alcohol 5 was acetylated using pfl and vinyl acetate. After 48 h at room temp. roughly equal quantities of the $(1 R, 4 R)$-alcohol $(+)-5$ and the $(1 S, 4 S)$-acetate $(-)-6$ (combined yield 100%, e.e. 74% for both compounds) were obtained. Extending the reaction period to 72.5 h gave, as expected, ${ }^{10}$ a decreased amount of the alcohol $(+)-5$ of higher optical purity (37% yield; $>95 \%$ e.e.).

The compounds 3-5 are extremely useful building blocks for the preparation of racemic or optically active carbocyclic nucleosides. Thus, the acetate $(\pm)-4$ reacted with adenine in the presence of sodium hydride and tetrakis(triphenylphosphine)palladium(0) to give the dideoxydidehydronucleoside (\pm)-8 (Scheme 1). The latter compound was converted into an inseparable mixture of aristeromycin (\pm)-9 and the isomer (\pm)-10. ${ }^{11}$

The ester $(+)-3$ reacted with 6 -chloropurine in the presence of sodium hydride and $\operatorname{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$ to give the cyclopentene
derivative $(+)-11$. The same cyclopentene derivative was obtained by coupling the alcohol $(+)-5$ and 6 -chloropurine under Mitsunobu conditions. The purine $(+)-11$ was bishydroxylated to give equal quantities of the readily separated diols $(+)-12$ and $(-)-13$. The chloropurine $(+)-12$ is readily transformed in high yield into $(+)$-aristeromycin $9[\alpha]_{\mathrm{D}}^{27}+50^{*}$ (c 0.44, dimethylformamide). ${ }^{12}$

Similarly, the ester $(+)-3$ was converted into the $2^{\prime}, 3^{\prime}-$ dideoxydihydronucleoside (+)-14 using 2 -amino-6-chloropurine, sodium hydride and tetrakis(triphenylphosphine)palladium. Compound $(+)-14$ was transformed into $(+)$ carbovir $15\left\{[\alpha]_{\mathrm{D}}^{20}+59.5\right.$ (c 0.4, methanol) $\}$ in the prescribed manner. ${ }^{7.13}$

Experimental

General Procedure of PFL-Catalysed Acetylation.-A suspension of (\pm)-($1 \beta, 4 \beta$)-1-(triphenylmethoxymethyl)cyclopent-2-en-4-ol 1 ($529.2 \mathrm{mg}, 1.49 \mathrm{mmol}$) and Pseudomonas fluorescens lipase (325.8 mg) in vinyl acetate (30 ml) was stirred for 75 h at room temperature. The enzyme was filtered off and the filtrate concentrated under reduced pressure. The residue (655.7 mg) was purified by flash chromatography on silica gel ($4: 1$ petroleum-EtOAc) to give $(1 R, 4 S)$-(+)-4-acetoxy-1-(triphenyl-methyloxymethyl)cyclopent-2-ene $3\left(295.8 \mathrm{mg}, 50 \%, R_{\mathrm{f}} 0.42\right)$ as an oil on evaporation of the solvent; $[\alpha]_{\mathrm{D}}^{21}+16.2$ (c) 1.5 in CHCl_{3}) (82% e.e.); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3062,3030,2916,2868 \mathrm{~s}$ $(\mathrm{CH}), 1732 \mathrm{~s}(\mathrm{CO})$ and $1597 \mathrm{w}(\mathrm{C}=\mathrm{C}) ; \delta\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.54-$ 1.67 (centred $1.60,1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{AcO}), 2.51(1 \mathrm{H}$, ddd, $J 14.5,8$ and $8,5-\mathrm{H}$), 2.90-3.03 (centred $2.96,1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), 3.05-3.19 (centred $3.12,2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTr}$), 5.64-5.73 (centred $5.67,1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.89(1 \mathrm{H}$, ddd, $J 5.5,2$ and $2,2-\mathrm{H}), 6.13(1 \mathrm{H}$, ddd, $J 5.5,1$ and $2,3-\mathrm{H})$ and $7.21-7.58(15 \mathrm{H}, \mathrm{m}, \mathrm{Tr})$; later fractions contained recovered starting $1\left(253.8 \mathrm{mg}, 48 \%, R_{\mathrm{f}} 0.16\right)$ as a white solid on evaporation of the solvent; m.p. $113-114{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{21}-72.1$ (c 1.2 in $\left.\mathrm{CHCl}_{3}\right)\left(>95 \%\right.$ e.e.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3382br (OH), 3059, 2938s (CH) and 1593s (C=C); $\delta(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.42(1 \mathrm{H}$, ddd, $J 14,3.5$ and $3.5,5-\mathrm{H}), 2.13(1 \mathrm{H}$, br d, J $6.5, \mathrm{OH}), 2.37(1 \mathrm{H}$, ddd, $J 14,7.5$ and $8.5,5-\mathrm{H}), 2.79-2.92$ (centred $2.84,1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.08\left(1 \mathrm{H}\right.$, dd, $J 5.5$ and $9, \mathrm{CH}_{2} \mathrm{OTr}$), $3.29\left(1 \mathrm{H}\right.$, dd, $J 5$ and $\left.9, \mathrm{CH}_{2} \mathrm{OTr}\right), 4.71(1 \mathrm{H}$, br s, $4-\mathrm{H}), 5.97$ $(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$ and $3-\mathrm{H}), 7.29(9 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.45(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
(+)-(1'R,4'S)-cis-6-Chloro-9-[4'-(triphenylmethyloxy-methyl)cyclopent-2'-enyl-purine 11.-A solution of 6-chloropurine ($196.3 \mathrm{mg}, 1.3 \mathrm{mmol}$) in dimethylformamide (1.2 ml) was stirred with sodium hydride (60% dispersion in oil; $48.9 \mathrm{mg}, 1.2$ mmol) for 2.5 h under nitrogen. This was added dropwise to a suspension of $(+)-3(271 \mathrm{mg}, 0.69 \mathrm{mmol}),\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](395.9$ $\mathrm{mg}, 0.3 \mathrm{mmol}, 0.5$ equiv.) and $\mathrm{PPh}_{3}(25.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 15$

[^0]

Scheme 1 Reagents and conditions: i, adenine, $\mathrm{NaH}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(5 \mathrm{~mol} \%\right.$) DMF-THF ($1: 1$), $50{ }^{\circ} \mathrm{C}, 42 \%$; ii, $\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, 55 \%$; $\mathrm{iii}, \mathrm{OsO} \mathbf{O}_{4}(0.01$ equiv.), N-methylmorpholine N-oxide (NMO) (1.12 equiv.), acetone $/ \mathrm{H}_{2} \mathrm{O}(10: 1), 89 \%$; iv, 6 -chloropurine, $\mathrm{NaH}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(0.5\right.$ equiv.), $\mathrm{PPh}_{3}(15$ $\mathrm{mol} \%$), DMF-THF ($1: 1$), $60^{\circ} \mathrm{C}, 30 \%$; v, 6-chloropurine, diethyl azodicarboxylate, PPh_{3}, room temp., $18 \mathrm{~h}, \mathrm{THF}, 47 \%$; vi, OsO_{4} (0.01 equiv.), NMO, acetone $/ \mathrm{H}_{2} \mathrm{O}(10: 1), 59 \%$; vii, NH_{3} then 80% aqueous acetic acid

$14 \mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{CPh}_{3}$
$15 \mathrm{X}=\mathrm{OH}, \mathrm{R}=\mathrm{H}$
$\mathrm{mol} \%$) in THF (1.6 ml) under argon, and washed through with an extra aliquot of THF (0.5 ml). The reaction mixture was immersed in a pre-heated oil bath $\left(60^{\circ} \mathrm{C}\right)$ and stirred for 4 h . The mixture was cooled, diluted with water (4 ml) and extracted with ethyl acetate $(10 \mathrm{ml} \times 4)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue (997.9 mg) was purified by flash chromatography over silica ($3: 1$ hexane-EtOAc) and fractions corresponding to $R_{\mathrm{f}} 0.35$ ($1: 1$ hexane-EtOAc) were collected to give the title compound 11 as a white foam on evaporation of the solvent ($100 \mathrm{mg}, 30 \%$); m.p. $58{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+17.2$ (c 1.0 in $\mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3062,2923,2871 \mathrm{~s}(\mathrm{CH}), 1589$ and $1558(\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 266.4 ; \delta\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.66(1$

H, ddd, $J 14,5.5$ and $5.5,6^{\prime}-\mathrm{H}$), 2.77-2.94 (centred $2.85,1 \mathrm{H}, \mathrm{m}$, $6^{\prime}-\mathrm{H}$), 3.10-3.29 (centred $3.20,3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTr}$ and $4^{\prime}-\mathrm{H}$), 5.735.84 (centred $5.79,1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}$), 5.89 ($1 \mathrm{H}, \mathrm{d}, J 5.5,2^{\prime}-\mathrm{H}$), 6.32 (1 $\left.\mathrm{H}, \mathrm{d}, J 5.5,3^{\prime}-\mathrm{H}\right), 7.26(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.01(1 \mathrm{H}, \mathrm{s}$, $2-\mathrm{H})$ and $8.71(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 35.40\left(\mathrm{CH}_{2}\right), 45.86(\mathrm{CH})$, $60,24(\mathrm{CH}), 65.96\left(\mathrm{CH}_{2}\right), 86.68(\mathrm{C}), 127.15(\mathrm{CH}, \mathrm{Ar}), 127.85$ (CH, Ar), 128.64 (CH, Ar), 131.96 (C), $140.08,143.37$ (CH), 143.88 (C, Ar and CH), $150.90(\mathrm{C}), 151.58(\mathrm{C})$ and $151.74(\mathrm{CH})$ (Found: 493.1795, $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}$; Calc. for $\left.\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}: 493.1795\right)$.

Acknowledgement

We thank the SERC and DTI for a research assistantship (to K. A. S.) under the IUBC Biotransformations LINK Scheme.

References

1 E. A. Saville-Stones, S. D. Lindell, N. S. Jennings, J. C. Head and M. J. Ford, preceding communication; we thank Dr. Stephen Lindell for a preprint of the Schering work, prior to publication.
2 V. E. Marquez and M. I. Lim, Med. Res. Rev., 1986, 6, 1; S. M. Roberts, Chem. in Brit., 1991, 518
3 M. F. Jones and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1988, 2927; M. S. Wolfe, B. L. Anderson, D. R. Borcherd and R. T. Borcherd, J. Org. Chem., 1990, 55, 4712.

4 A. D. Borthwick, D. N. Evans, B. E. Kirk, K. Biggadike, A. M. Exall, P. Youds, S. M. Roberts, D. J. Knight and J. A. V. Coates, J. Med. Chem., 1990, 33, 179.
5 R. M. Highcock, H. Hilpert, P. L. Myers, S. M. Roberts and R. Storer, J. Chem. Soc., Perkin Trans. 1, 1991, 1127.
6 D. M. Coe, H. Hilpert, M. R. Peel, S. A. Noble, S. M. Roberts and R. Storer, J. Chem. Soc., Chem. Commun., 1991, 312.
7 S. J. C. Taylor, A. G. Sutherland, C. Lee, R. Wisdom, S. Thomas, S. M. Roberts and C. Evans, J. Chem. Soc., Chem. Commun., 1990, 1120; see also C. Evans, R. McCague, S. M. Roberts and A. G. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1991, 656.
8 J. J. S. Bajorek, R. Battaglia, G. Pratt and J. K. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1974, 1243; H. Pawson and U. Maaß, Chem. Ber., 1981, 114, 346.
9 Kin-Ichi Tadano, K. Hakuba, H. Kimura and S. Ogawa, J. Org. Chem., 1989, 54, 276.

10 C.-S. Chen and C. J. Sih, Angew. Chem., Int. Ed. Engl., 1989, 28, 695.
11 B. M. Trost, Gee-Hong Kuo and T. Benneche, J. Am. Chem. Soc., 1988, 110, 621.
12 Naturally occurring (-)-aristeromycin has $[\alpha]_{\mathrm{D}}-52.5$ (c, 1 DMF); T. Kusaka, H. Yamamoto, M. Shibata, M. Muroi, T. Kishi and K. Hizuno, J. Antibiot., 1968, 21, 255.
13 ($1 R, 4 S$)-(4-Hydroxymethyl)cyclopent-2-enylguanine has $[\alpha]_{\mathrm{D}}-64$ (c, 0.4 methanol); C. Williamson, A. M. Exall, M. F. Jones, C. L. Mo, P. L. Myers, I. L. Paternoster and R. Storer, poster presentation at SCI Medicinal Chemistry Symposium, Cambridge. 1989.

Paper 1/03280A
Received 2 July 1991
Accepted 16th July 1991

[^0]: * $[\alpha]_{\mathrm{D}}$ Values recorded in $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$ throughout.

